Search results

Search for "carbon nanostructures" in Full Text gives 45 result(s) in Beilstein Journal of Nanotechnology.

Design of surface nanostructures for chirality sensing based on quartz crystal microbalance

  • Yinglin Ma,
  • Xiangyun Xiao and
  • Qingmin Ji

Beilstein J. Nanotechnol. 2022, 13, 1201–1219, doi:10.3762/bjnano.13.100

Graphical Abstract
  • nanostructures such as carbon nanotubes and fullerenes were demonstrated to have chirality. However, the preparation of chirality-pure substrates still requires the combination of specific carbon nanostructures and homochiral functionalizations [150][151]. Protein misfolding, which may form amyloid aggregates
  • oligomers, and the subsequent fibrillation process. The results give interesting insights into the crucial roles of biological membranes on protein amyloidosis, and how intrinsic chirality contributes to this process. It also brings the prospect of chiral-modified carbon nanostructures for biological and
  • molecular handedness. Chiral modified carbons Carbon nanomaterials possess attractive features since they are low cost, capable to be produced in large-scale, and have good stability and bio-compatibility, which makes them an excellent candidate for sensing applications [147][148][149]. Some carbon
PDF
Album
Review
Published 27 Oct 2022

Sputtering onto liquids: a critical review

  • Anastasiya Sergievskaya,
  • Adrien Chauvin and
  • Stephanos Konstantinidis

Beilstein J. Nanotechnol. 2022, 13, 10–53, doi:10.3762/bjnano.13.2

Graphical Abstract
PDF
Album
Supp Info
Review
Published 04 Jan 2022

Assessment of the optical and electrical properties of light-emitting diodes containing carbon-based nanostructures and plasmonic nanoparticles: a review

  • Keshav Nagpal,
  • Erwan Rauwel,
  • Frédérique Ducroquet and
  • Protima Rauwel

Beilstein J. Nanotechnol. 2021, 12, 1078–1092, doi:10.3762/bjnano.12.80

Graphical Abstract
  • employed in display applications and lighting systems. Further research on LED that incorporates carbon nanostructures and metal nanoparticles exhibiting surface plasmon resonance has demonstrated a significant improvement in device performance. These devices offer lower turn-on voltages, higher external
  • quantum efficiencies, and luminance. De facto, plasmonic nanoparticles, such as Au and Ag have boosted the luminance of red, green, and blue emissions. When combined with carbon nanostructures they additionally offer new possibilities towards lightweight and flexible devices with better thermal management
  • . This review surveys the diverse possibilities to combine various inorganic, organic, and carbon nanostructures along with plasmonic nanoparticles. Such combinations would allow an enhancement in the overall properties of LED. Keywords: carbon nanotubes (CNT); graphene; light-emitting diodes (LED
PDF
Album
Review
Published 24 Sep 2021

Comprehensive review on ultrasound-responsive theranostic nanomaterials: mechanisms, structures and medical applications

  • Sepand Tehrani Fateh,
  • Lida Moradi,
  • Elmira Kohan,
  • Michael R. Hamblin and
  • Amin Shiralizadeh Dezfuli

Beilstein J. Nanotechnol. 2021, 12, 808–862, doi:10.3762/bjnano.12.64

Graphical Abstract
  • (conventional and echogenic), niosomes, nanoemulsions, polymeric nanoparticles, chitosan nanocapsules, dendrimers, hydrogels, nanogels, gold nanoparticles, titania nanostructures, carbon nanostructures, mesoporous silica nanoparticles, fuel-free nano/micromotors. Keywords: smart nanomaterials; sonodynamic
PDF
Album
Review
Published 11 Aug 2021

Free and partially encapsulated manganese ferrite nanoparticles in multiwall carbon nanotubes

  • Saja Al-Khabouri,
  • Salim Al-Harthi,
  • Toru Maekawa,
  • Mohamed E. Elzain,
  • Ashraf Al-Hinai,
  • Ahmed D. Al-Rawas,
  • Abbsher M. Gismelseed,
  • Ali A. Yousif and
  • Myo Tay Zar Myint

Beilstein J. Nanotechnol. 2020, 11, 1891–1904, doi:10.3762/bjnano.11.170

Graphical Abstract
  • were attributed to an increase in the dipolar interparticle interactions due to the close packing of nanoparticles within the tubes [7]. There are several potential applications that use metal–metal oxide/CNTs hybrid systems. Carbon nanostructures decorated with titania and silica are used for the
PDF
Album
Supp Info
Full Research Paper
Published 29 Dec 2020

Multicomponent bionanocomposites based on clay nanoarchitectures for electrochemical devices

  • Giulia Lo Dico,
  • Bernd Wicklein,
  • Lorenzo Lisuzzo,
  • Giuseppe Lazzara,
  • Pilar Aranda and
  • Eduardo Ruiz-Hitzky

Beilstein J. Nanotechnol. 2019, 10, 1303–1315, doi:10.3762/bjnano.10.129

Graphical Abstract
  • different properties will determine a functional set of predetermined utility with SEP maintaining stable colloidal dispersions of different nanoparticles and polymers in water. Keywords: bionanocomposites; carbon nanostructures; electrochemical devices; halloysite nanotubes; sepiolite; Introduction In
PDF
Album
Supp Info
Full Research Paper
Published 25 Jun 2019

Nanoporous water oxidation electrodes with a low loading of laser-deposited Ru/C exhibit enhanced corrosion stability

  • Sandra Haschke,
  • Dmitrii Pankin,
  • Vladimir Mikhailovskii,
  • Maïssa K. S. Barr,
  • Adriana Both-Engel,
  • Alina Manshina and
  • Julien Bachmann

Beilstein J. Nanotechnol. 2019, 10, 157–167, doi:10.3762/bjnano.10.15

Graphical Abstract
  • complex and the subsequent self-organization into hybrid metal/carbon nanostructures with controlled composition and morphology [32]. With the appropriate choice of laser wavelength and solvent, which both need to be adjusted to the absorption behavior of the organometallic complex, metal/carbon
  • “nanotubular” in the rest of the paper). These novel metal/carbon nanostructures are characterized regarding their morphology and phase composition. Finally, the electrocatalytic water oxidation performance of planar and nanostructured Ru/C electrodes is studied at pH 4. The focus lies on (1) the optimization
PDF
Album
Supp Info
Full Research Paper
Published 11 Jan 2019

Accurate control of the covalent functionalization of single-walled carbon nanotubes for the electro-enzymatically controlled oxidation of biomolecules

  • Naoual Allali,
  • Veronika Urbanova,
  • Mathieu Etienne,
  • Xavier Devaux,
  • Martine Mallet,
  • Brigitte Vigolo,
  • Jean-Joseph Adjizian,
  • Chris P. Ewels,
  • Sven Oberg,
  • Alexander V. Soldatov,
  • Edward McRae,
  • Yves Fort,
  • Manuel Dossot and
  • Victor Mamane

Beilstein J. Nanotechnol. 2018, 9, 2750–2762, doi:10.3762/bjnano.9.257

Graphical Abstract
  • attached to CNT sidewalls. XPS and TGA-MS experiments thus show that oxidized defects can be detected for samples having undergone the oxidation and functionalization steps. Raman spectroscopy is a method of choice to observe the creation of sp3 defects in carbon nanostructures, due to the presence in the
PDF
Album
Supp Info
Full Research Paper
Published 26 Oct 2018

Oriented zinc oxide nanorods: A novel saturable absorber for lasers in the near-infrared

  • Pavel Loiko,
  • Tanujjal Bora,
  • Josep Maria Serres,
  • Haohai Yu,
  • Magdalena Aguiló,
  • Francesc Díaz,
  • Uwe Griebner,
  • Valentin Petrov,
  • Xavier Mateos and
  • Joydeep Dutta

Beilstein J. Nanotechnol. 2018, 9, 2730–2740, doi:10.3762/bjnano.9.255

Graphical Abstract
  • ” saturable absorbers (SAs) for lasers operating in the passively Q-switched (PQS) and mode-locked regimes. These include carbon nanostructures (e.g., graphene, graphene oxide, graphite nanoparticles, single-walled carbon nanotubes (SWCNTs)) [12][13][14][15], few-layer transition metal dichalcogenides (TMDs
PDF
Album
Full Research Paper
Published 23 Oct 2018

Electrospun one-dimensional nanostructures: a new horizon for gas sensing materials

  • Muhammad Imran,
  • Nunzio Motta and
  • Mahnaz Shafiei

Beilstein J. Nanotechnol. 2018, 9, 2128–2170, doi:10.3762/bjnano.9.202

Graphical Abstract
  • ][22][23][24][25][26][27][28][29][30][31][32][33]. Different types of nanostructures, including those based on metal oxides (MOx), organic and inorganic materials and carbon nanostructures, have shown promising sensing performance due to their unique characteristics, such as high surface-to-volume
PDF
Album
Supp Info
Review
Published 13 Aug 2018

Metal-free catalysis based on nitrogen-doped carbon nanomaterials: a photoelectron spectroscopy point of view

  • Mattia Scardamaglia and
  • Carla Bittencourt

Beilstein J. Nanotechnol. 2018, 9, 2015–2031, doi:10.3762/bjnano.9.191

Graphical Abstract
  • -graphene was unaffected by the poisoning, while the Pt–C electrode current abruptly decreased when the gas was introduced. The three examples reported so far show the performance of nitrogen-doped carbon nanostructures in catalysis and their better efficiency, particularly that of graphene, when compared
  • mechanism of nitrogen-doped carbon nanostructures is still under intense debate. In this review, we link the fundamental electronic properties to the catalytic performance from a photoelectron spectroscopy point of view. We focus on the discussion of the inherent ORR activity of nitrogen-doped graphene and
  • system. The most common nitrogen doping techniques and how the doping activates the surface are described, and the spectroscopic differences regarding the nitrogen incorporation in graphene and CNTs are discussed. Review Heteroatom-doped carbon nanostructures Carbon nanotubes and graphene share many
PDF
Album
Review
Published 18 Jul 2018

Toward the use of CVD-grown MoS2 nanosheets as field-emission source

  • Geetanjali Deokar,
  • Nitul S. Rajput,
  • Junjie Li,
  • Francis Leonard Deepak,
  • Wei Ou-Yang,
  • Nicolas Reckinger,
  • Carla Bittencourt,
  • Jean-Francois Colomer and
  • Mustapha Jouiad

Beilstein J. Nanotechnol. 2018, 9, 1686–1694, doi:10.3762/bjnano.9.160

Graphical Abstract
  • Technology, 54224, Abu Dhabi, United Arab Emirates Research Group on Carbon Nanostructures (CARBONNAGe), University of Namur, 61 Rue de Bruxelles, 5000 Namur, Belgium Department of Advanced Electron Microscopy, Imaging and Spectroscopy, International Iberian Nanotechnology Laboratory (INL), Avenida Mestre
PDF
Album
Supp Info
Full Research Paper
Published 07 Jun 2018

Single-step process to improve the mechanical properties of carbon nanotube yarn

  • Maria Cecilia Evora,
  • Xinyi Lu,
  • Nitilaksha Hiremath,
  • Nam-Goo Kang,
  • Kunlun Hong,
  • Roberto Uribe,
  • Gajanan Bhat and
  • Jimmy Mays

Beilstein J. Nanotechnol. 2018, 9, 545–554, doi:10.3762/bjnano.9.52

Graphical Abstract
  • graphitic nanostructures [30][33][34]. This kind of grafting remains the subject of investigation because of a variety of structural transformations that may occur in carbon nanostructures under irradiation and different experimental configurations producing interesting and unexpected results. Evora et al
PDF
Album
Full Research Paper
Published 13 Feb 2018

Dry adhesives from carbon nanofibers grown in an open ethanol flame

  • Christian Lutz,
  • Julia Syurik,
  • C. N. Shyam Kumar,
  • Christian Kübel,
  • Michael Bruns and
  • Hendrik Hölscher

Beilstein J. Nanotechnol. 2017, 8, 2719–2728, doi:10.3762/bjnano.8.271

Graphical Abstract
  • force microscopy; carbon nanofibers; Introduction One-dimensional carbon nanostructures (1D-CNs), such as carbon nanofibers (CNFs) and carbon nanotubes (CNTs) consisting of cylindrical graphitic sheets, are very promising materials for nanotechnology [1]. They are well known for their outstanding
  • surface of the sample. To prevent the magnets from losing their magnetization because of the elevated temperatures, we placed a piece of a silicon wafer between flame and magnet acting as heat shield. The overall morphology of the grown carbon nanostructures was investigated by scanning electron
  • microscopy (SEM, Zeiss SUPRA 60 VP) and high-resolution transmission electron microscopy (HRTEM, FEI Titan 80-300). TEM measurements were performed at 80 kV operation voltage and images acquired using a Gatan US1000 CCD camera. TEM samples were prepared by scraping the grown carbon nanostructures from the
PDF
Album
Full Research Paper
Published 15 Dec 2017

One-step chemical vapor deposition synthesis and supercapacitor performance of nitrogen-doped porous carbon–carbon nanotube hybrids

  • Egor V. Lobiak,
  • Lyubov G. Bulusheva,
  • Ekaterina O. Fedorovskaya,
  • Yury V. Shubin,
  • Pavel E. Plyusnin,
  • Pierre Lonchambon,
  • Boris V. Senkovskiy,
  • Zinfer R. Ismagilov,
  • Emmanuel Flahaut and
  • Alexander V. Okotrub

Beilstein J. Nanotechnol. 2017, 8, 2669–2679, doi:10.3762/bjnano.8.267

Graphical Abstract
  • in the differential scanning calorimetry (DSC) curves are indicative of a variety of carbon nanostructures. In the case of the sample produced using the Fe/Mo catalyst, the DSC curve showed two distinct exothermic peaks at 540 and 570 °С (Figure S5c in Supporting Information File 1), which could be
PDF
Album
Supp Info
Full Research Paper
Published 12 Dec 2017

Localized growth of carbon nanotubes via lithographic fabrication of metallic deposits

  • Fan Tu,
  • Martin Drost,
  • Imre Szenti,
  • Janos Kiss,
  • Zoltan Kónya and
  • Hubertus Marbach

Beilstein J. Nanotechnol. 2017, 8, 2592–2605, doi:10.3762/bjnano.8.260

Graphical Abstract
  • size and appearance one might anticipate that these are multiwalled CNTs (MWCNTs). This could be verified by investigations in a separate transmission electron microscope (TEM). Therefore, the carbon nanostructures to be addressed were extracted from a representative sample and then transferred to a
  • TEM sample holder and subsequently imaged in the TEM. Figure 5 depicts selected images of the carbon nanostructures. In particular, Figure 5b demonstrates that the secondary carbon nanostructures are indeed MWCNTs as evidenced by the fringes in the detailed image. Fabrication of carbon nanotube
  • for future investigation is the fabrication of EBID seed structures with different geometries to trigger novel carbon nanostructures such as “twisted rope” structures or extended 2D materials. Experimental The EBID and AG processes were carried out in a commercial UHV system (Multiscanlab, Scienta
PDF
Album
Supp Info
Full Research Paper
Published 05 Dec 2017

Increasing the stability of DNA nanostructure templates by atomic layer deposition of Al2O3 and its application in imprinting lithography

  • Hyojeong Kim,
  • Kristin Arbutina,
  • Anqin Xu and
  • Haitao Liu

Beilstein J. Nanotechnol. 2017, 8, 2363–2375, doi:10.3762/bjnano.8.236

Graphical Abstract
  • . Similarly, DNA nanostructures were also used in the anhydrous HF vapor etching of a SiO2 substrate, producing positive imprints of the DNA nanostructures with sub-10 nm resolution [35]. DNA nanostructures were also converted into carbon nanostructures with shape conservation by atomic layer deposition of
PDF
Album
Supp Info
Full Research Paper
Published 09 Nov 2017

Functional materials for environmental sensors and energy systems

  • Michele Penza,
  • Anita Lloyd Spetz,
  • Albert Romano-Rodriguez and
  • Meyya Meyyappan

Beilstein J. Nanotechnol. 2017, 8, 2015–2016, doi:10.3762/bjnano.8.201

Graphical Abstract
  • nanomaterials (e.g., nanowires, nanotubes, graphene, metal oxides, carbon nanostructures, large band gap semiconductors, and metals) with new sensing properties (e.g., ppb-level detection, high sensitivity, selectivity) that are self-heating and provide durable operation for low-power devices (tens of μW to
PDF
Editorial
Published 26 Sep 2017

Fluorination of vertically aligned carbon nanotubes: from CF4 plasma chemistry to surface functionalization

  • Claudia Struzzi,
  • Mattia Scardamaglia,
  • Jean-François Colomer,
  • Alberto Verdini,
  • Luca Floreano,
  • Rony Snyders and
  • Carla Bittencourt

Beilstein J. Nanotechnol. 2017, 8, 1723–1733, doi:10.3762/bjnano.8.173

Graphical Abstract
  • Claudia Struzzi Mattia Scardamaglia Jean-Francois Colomer Alberto Verdini Luca Floreano Rony Snyders Carla Bittencourt Chimie des Interactions Plasma-Surface, CIRMAP, University of Mons, 7000 Mons, Belgium Research Group on Carbon Nanostructures (CARBONNAGe), University of Namur, 5000 Namur
PDF
Album
Supp Info
Full Research Paper
Published 21 Aug 2017

Process-specific mechanisms of vertically oriented graphene growth in plasmas

  • Subrata Ghosh,
  • Shyamal R. Polaki,
  • Niranjan Kumar,
  • Sankarakumar Amirthapandian,
  • Mohamed Kamruddin and
  • Kostya (Ken) Ostrikov

Beilstein J. Nanotechnol. 2017, 8, 1658–1670, doi:10.3762/bjnano.8.166

Graphical Abstract
  • along with supersaturation of the carbon source and a simultaneous etching process by nascent hydrogen [21][22][23][24][25]. Based on the experimental observations, a phenomenological four-stage model was proposed [24]. In the plasma-assisted growth of carbon nanostructures, the hydrocarbon precursor
  • . Therefore, the electron gas acts as an effective negative bias field to generate high-energy ions. The electrons and ions interact with other plasma species through chemical reactions that lead to molecular decomposition and transformative re-assembly [57]. The species that influence the growth of carbon
  • nanostructures in plasmas are C2 and CH, as well as atomic and molecular hydrogen [26]. The rapid nucleation of nanoislands, self-organization and coalescence between them take place through direct adsorption and surface diffusion of carbon-containing species on the substrate surface [24]. Hence, the commonly
PDF
Album
Full Research Paper
Published 10 Aug 2017

Luminescent supramolecular hydrogels from a tripeptide and nitrogen-doped carbon nanodots

  • Maria C. Cringoli,
  • Slavko Kralj,
  • Marina Kurbasic,
  • Massimo Urban and
  • Silvia Marchesan

Beilstein J. Nanotechnol. 2017, 8, 1553–1562, doi:10.3762/bjnano.8.157

Graphical Abstract
  • 10.3762/bjnano.8.157 Abstract The combination of different components such as carbon nanostructures and organic gelators into composite nanostructured hydrogels is attracting wide interest for a variety of applications, including sensing and biomaterials. In particular, both supramolecular hydrogels that
  • drug delivery and even sensing, if the nanodots were suitably derivatized to release a drug or undergo fluorescence quenching upon binding of a specific target molecule. Results and Discussion Peptide self-assembly in the presence of NCNDs The incorporation of carbon nanostructures into hydrogels is a
PDF
Album
Supp Info
Full Research Paper
Published 01 Aug 2017

Metal oxide nanostructures: preparation, characterization and functional applications as chemical sensors

  • Dario Zappa,
  • Angela Bertuna,
  • Elisabetta Comini,
  • Navpreet Kaur,
  • Nicola Poli,
  • Veronica Sberveglieri and
  • Giorgio Sberveglieri

Beilstein J. Nanotechnol. 2017, 8, 1205–1217, doi:10.3762/bjnano.8.122

Graphical Abstract
  • crystal growth and in particular the preparation of nanostructures because it can be used for different materials such as metal oxides, carbon nanostructures and biomaterials [55]. In this work, we applied this technique in order to obtain niobium oxide nanostructures. We started from the method explained
PDF
Album
Full Research Paper
Published 06 Jun 2017

Modeling adsorption of brominated, chlorinated and mixed bromo/chloro-dibenzo-p-dioxins on C60 fullerene using Nano-QSPR

  • Piotr Urbaszek,
  • Agnieszka Gajewicz,
  • Celina Sikorska,
  • Maciej Haranczyk and
  • Tomasz Puzyn

Beilstein J. Nanotechnol. 2017, 8, 752–761, doi:10.3762/bjnano.8.78

Graphical Abstract
  • – opportunities and risks of possible surface interactions Fullerene C60 [12][13][14], discovered in 1985, has a soccer ball-like structure [15] with a chemical structure representative of carbon nanostructures. Its unique properties and shape make C60 and its derivatives promising candidates for various
PDF
Album
Supp Info
Full Research Paper
Published 31 Mar 2017

Graphene-enhanced plasmonic nanohole arrays for environmental sensing in aqueous samples

  • Christa Genslein,
  • Peter Hausler,
  • Eva-Maria Kirchner,
  • Rudolf Bierl,
  • Antje J. Baeumner and
  • Thomas Hirsch

Beilstein J. Nanotechnol. 2016, 7, 1564–1573, doi:10.3762/bjnano.7.150

Graphical Abstract
  • baseline was again obtained. That means that no specific binding between sample components and the graphene layer was formed. Thus, synergistic plasmonic effects caused by the interplay of the localized surface plasmons with the plasmonics of the overlaid carbon nanostructures lead to the significant
PDF
Album
Supp Info
Full Research Paper
Published 01 Nov 2016

Fabrication and characterization of branched carbon nanostructures

  • Sharali Malik,
  • Yoshihiro Nemoto,
  • Hongxuan Guo,
  • Katsuhiko Ariga and
  • Jonathan P. Hill

Beilstein J. Nanotechnol. 2016, 7, 1260–1266, doi:10.3762/bjnano.7.116

Graphical Abstract
  • of branched-MWCNTs, which opens the door to a multitude of possible applications. Keywords: branched multiwalled carbon nanotubes; carbon nanostructures; carbon nanotubes; graphene nanoribbons; multiwalled carbon nanotubes; Introduction Lighter, stronger materials such as nanocarbon composites
PDF
Album
Full Research Paper
Published 05 Sep 2016
Other Beilstein-Institut Open Science Activities